Transfer Learning Based Fault Detection for Suspension System Using Vibrational Analysis and Radar Plots
نویسندگان
چکیده
The suspension system is of paramount importance in any automobile. Thanks to the system, every journey benefits from pleasant rides, stable driving and precise handling. However, prone faults that can significantly impact quality vehicle. This makes it essential find diagnose rectify them immediately. Numerous techniques have been used identify faults, each with drawbacks. paper’s proposed fault detection aims detect these using deep transfer learning instead time-consuming expensive conventional methods. paper pre-trained networks such as Alex Net, ResNet-50, Google Net VGG16 radar plots vibration signals generated by eight cases. data were acquired an accelerometer acquisition placed on a test rig for different conditions (seven faulty, one good). model highest accuracy identifying detecting among four models was chosen adopted defects. results state produced classification 96.70%.
منابع مشابه
Numerical Survey of Vibrational Model for Third Aircraft based on HR Suspension System Actuator Using Two Bee Algorithm Objective Functions
This research explains airplane model with two vertical vibrations for airframe and landing gear system. The purpose of this work is to advance vibrational model for study of adjustable vibration absorber and to plan Proportional-Integration-Derivative approach for adapting semi active control force. The coefficients of this method are modified as stated by Bee multiobjective optimization using...
متن کاملA Fuzzy Rule Based System for Fault Diagnosis, Using Oil Analysis Results
Condition Monitoring, Oil Analysis, Wear Behavior, Fuzzy Rule Based System Maintenance , as a support function, plays an important role in manufacturing companies and operational organizations. In this paper, fuzzy rules used to interpret linguistic variables for determination of priorities. Using this approach, such verbal expressions, which cannot be explicitly analyzed or statistic...
متن کاملSimulation-Based Radar Detection Methods
In this paper, radar detection based on Monte Carlo sampling is studied. Two detectors based on Importance Sampling are presented. In these detectors, called Particle Detector, the approximated likelihood ratio is calculated by Monte Carlo sampling. In the first detector, the unknown parameters are first estimated and are substituted in the likelihood ratio (like the GLRT method). In the sec...
متن کاملNonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملSimulation-Based Radar Detection Methods
In this paper, radar detection based on Monte Carlo sampling is studied. Two detectors based on Importance Sampling are presented. In these detectors, called Particle Detector, the approximated likelihood ratio is calculated by Monte Carlo sampling. In the first detector, the unknown parameters are first estimated and are substituted in the likelihood ratio (like 
the GLRT method). In the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machines
سال: 2023
ISSN: ['2075-1702']
DOI: https://doi.org/10.3390/machines11080778